New paper on Timber Rattlesnake hibernacula

Timber Rattlesnake at hibernacula

PhD candidate Andrew Jesper has a new paper out today on determining suitable hibernacula for the state threatened Timber Rattlesnake. The initial habitat suitability model was developed based on known hibernacula across the state of Illinois. The model was refined over a series of surveys based on the model and updating the model based on information from the surveys. Habitat suitability models inform land conservation decisions, enabling prioritization of areas most likely to support suitable hibernacula.

ABSTRACT: The dependency on hibernacula for extended periods presents terrestrial reptiles with the challenge of locating thermally adequate hibernacula each winter. Defining the habitat characteristics of hibernacula is crucial for understanding the overwintering requirements and distributions of hibernacula-dependent reptiles, alongside identifying habitats which warrant special conservation concern. Our objectives were to identify the overwintering habitat characteristics of the imperiled timber rattlesnake Crotalus horridus in Illinois, USA, and to determine the distribution of likely hibernacula habitats throughout the state. Due to the initial sparsity of hibernacula records in Illinois, we adopted an iterative habitat suitability modeling process consisting of 3 distinct rounds of Maxent construction and revision. Each round was informed with updated information from model-guided surveys or by building rapport with in-state naturalists and researchers who knew of additional hibernacula locations. We created our final model using 36 hibernacula and identified slope angle (indicative of rock outcrops and shallow soils), topographical position index, forest patch area, and aspect (decomposed into 2 linearized variables: southness and eastness) as important drivers of C. horridus hibernacula habitat in Illinois. Together, the 5 variables and site surveys suggest the suitable overwintering habitat for C. horridus in Illinois is located on south- to southwest-facing outcrops on upper slopes and ridges of larger forest patches. Such habitat is distributed primarily in southern Illinois and throughout the Mississippi River and Illinois River border counties. Our study adds to the current understanding of the species’ overwintering requirements and provides a foundation for future ecological studies, management, and survey efforts throughout Illinois.

Read the full paper in: Jesper, A. C., S.A. Eckert, S.R. Ballard, J.A. Crawford, and M.J. Dreslik. 2024. Distribution and drivers of critical hibernacula for the timber rattlesnake Crotalus horridus in Illinois, USA. Endangered Species Research Volume 53, page 467

New publication on Timber Rattlesnake movement

PACeLab PhD Candidate Andrew Jesper co-authored a new paper with his undergrad research advisor Scott Eckert at Principia College. Jesper and Eckert radio-tracked 29 individual Crotalus horridus (13 female, 16 male) in Jersey County, Illinois.

On average, males move greater daily distances and occupy larger home ranges than females, particularly during the summer when Timber Rattlesnakes find mates. Females dispersed shorter distances from their hibernacula than males. Several snakes were tracked over multiple years, and returned to their same general range each summer. This site fidelity may limit the success of translocating adult individuals.

 

 

Abstract

Understanding the home range of imperiled reptiles is important to the design of conservation and recovery efforts. Despite numerous home range studies for the Threatened timber rattlesnake (Crotalus horridus), many have limited sample sizes or outdated analytical methods and only a single study has been undertaken in the central midwestern United States. We report on the home range size, site fidelity, and movements of C. horridus in west-central Illinois. Using VHF telemetry, we located 29 C. horridus (13 female, 16 male) over a 5-year period for a total of 51 annual records of the species’ locations and movements. We calculated annual home ranges for each snake per year using 99%, 95%, and 50% isopleths derived from Brownian Bridge utilization distributions (BBMM), and we also report 100% minimum convex polygons to be consistent with older studies. We examined the effects of sex, mass, SVL, and year on home range sizes and reported on movement metrics as well as home range fidelity using both Utilization Distribution Overlap Index (UDOI) and Bhattacharyya’s affinity (BA) statistics. The home range sizes for male and non-gravid C. horridus were 88.72 Ha (CI 63.41–110.03) and 28.06 Ha (CI 17.17–38.96) for 99% BBMM; 55.65 Ha (CI 39.36–71.93) and 17.98 (CI 10.69–25.28) for 95% BBMM; 7.36 Ha (CI 5.08–9.64) and 2.06 Ha (CI 1.26–2.87) for 50% BBMM; and 78.54Ha (CI 47.78–109.30) and 27.96 Ha (CI 7.41–48.51) for MCP. The estimated daily distance traveled was significantly greater for males (mean = 57.25 m/day, CI 49.06–65.43) than females (mean = 27.55 m/day, CI 18.99–36.12), particularly during the summer mating season. Similarly, maximum displacement distances (i.e., maximum straight-line distance) from hibernacula were significantly greater for males (mean = 2.03 km, CI 1.57–2.48) than females (mean = 1.29 km, CI 0.85–1.73], and on average, males were located further from their hibernacula throughout the entirety of their active season. We calculated fidelity to high-use areas using 11 snakes that were tracked over multiple years. The mean BBMM overlap using Bhattacharyya’s affinity (BA) for all snakes at the 99%, 95%, and 50% isopleths was 0.48 (CI 0.40–0.57), 0.40 (0.32–0.49), and 0.07 (0.05–0.10), respectively. The mean BBMM overlap for all snakes using the Utilization Distribution Overlap Index (UDOI) at the 99%, 95%, and 50% isopleths was 0.64 (CI 0.49–0.77), 0.32 (CI 0.21–0.47), and 0.02 (CI 0.01–0.05)), respectively. Our results are largely consistent with those of other studies in terms of the influence of sex on home range size and movements. The species also exhibits strong site fidelity with snakes generally using the same areas each summer, though there is far less overlap in specific (e.g., 50% UDOI) high-use areas, suggesting some plasticity in hunting areas. Particularly interesting was the tendency for snakes to disperse from specific hibernacula in the same general direction to the same general areas. We propose some possible reasons for this dispersal pattern.

Read the full article: Eckert, S.A., Jesper, A.C. Home range, site fidelity, and movements of timber rattlesnakes (Crotalus horridus) in west-central Illinois. Anim Biotelemetry 12, 1 (2024). https://doi.org/10.1186/s40317-023-00357-8

 

New Timber Rattlesnake publication by PhD candidate Andrew Jesper

Trailcam image of Timber Rattlesnake at den opening

Abstract: Many temperate reptiles survive winter by using subterranean refugia until external conditions become suitable for activity. Determining when to emerge from refugia relies on the ability to interpret when above-ground environmental conditions are survivable. If temperate reptiles rely on specific environmental cues such as temperature to initiate emergence, we should expect emergence phenologies to be predictable using local climatic data. However, specific predictors of emergence for many temperate reptiles, including the Timber Rattlesnake (Crotalus horridus), remain unclear, limiting our understanding of their overwintering phenology and restricting effective conservation and management. Our objectives were to identify environmental cues of spring emergence for C. horridus in Illinois to determine the species’ emergence phenology, and to examine the applicability of identified cues in predicting emergence phenology across the species’ range. We used wildlife cameras and weather station-derived environmental data to observe and predict the daily surface presence of C. horridus throughout the late winter and early spring at communal refugia in west-central and northern Illinois. The most parsimonious model for predicting surface presence included the additive effects of maximum daily temperature, accumulated degree days, and latitude. With a notable exception in the southeastern U.S., the model accurately predicted the average emergence day for eight other populations range wide, emphasizing the importance of temperature in influencing the phenological plasticity observed across the species’ range. The apparent broad applicability of the model to other populations suggests it can be a valuable tool in predicting spring emergence phenology. Our results provide a foundation for further ecological enquiries and improved management and conservation strategies.

 

Read the paper at:

Jesper AC, Eckert SA, Bielema BJ, Ballard SR, Dreslik MJ. 2023. Phenology and predictors of spring emergence for the Timber Rattlesnake (Crotalus horridus) PeerJ 11:e16044 https://doi.org/10.7717/peerj.16044

Massasauga hibernacula at Carlyle Lake are genetically distinct units

Genetic analysis shows that the Eastern Massasauga hibernacula at Carlyle Lake are genetically distinct units.

Once found across the northern two-thirds of Illinois, populations of the Eastern Massasauga have declined, with only one known population remaining in Illinois. Our long term studies have found the top four sources of mortality to include automobiles, predation, management related mortality (prescribed burns, mowing, etc), and disease. Our current study indicates that efforts to address these ecological threats may not be enough to save this imperiled species.

The area under what is now known as Carlyle Lake was a floodplain valley known as Boulder Bottoms. The creation of Carlyle Lake in the 1960s flooded this area, separating habitats on the the east and west sides of the Kaskaskia River, pushing wildlife, including the Eastern Massasauga, to the edges between the lake and agricultural fields.  These bands of habitat are separated by the lake, paved roads, agriculture, and urbanization, potentially limiting migration and gene flow between patches.

Our current study looked at 327 genetic samples collected between 1999 and 2015 from individuals at 9 hibernacula across 3 study areas at Carlyle Lake. Study sites separated by up to 5 km had limited gene flow, as did hibernacula separated by a few hundred meters. This restriction of gene flow increases the vulnerability of these already imperiled populations.

Our study indicates that conservation and recovery efforts need to consider genetic rescue efforts in addition to reduction of ecological threats. Such efforts may include translocations and captive rearing to reduce the impacts of inbreeding depression and genetic drift. Even short distance translocations between the different study areas at Carlyle Lake could help restore  gene flow impeded by contemporary human created fragmentation.

Read the paper at PLOS One

Anthonysamy, Whitney J.B., Michael J. Dreslik, Sarah J. Baker, Mark A. Davis, Marlis R. Douglas, Michael E. Douglas, and Christopher A. Phillips. 2022. Limited gene flow and pronounced population genetic structure of Eastern Massasauga (Sistrurus catenatus) in a Midwestern prairie remnant. PLOS ONE: https://doi.org/10.1371/journal.pone.0265666